If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24h^2-56h-48=0
a = 24; b = -56; c = -48;
Δ = b2-4ac
Δ = -562-4·24·(-48)
Δ = 7744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7744}=88$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-88}{2*24}=\frac{-32}{48} =-2/3 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+88}{2*24}=\frac{144}{48} =3 $
| -11=r/17 | | 1/2t+7=-7 | | 4(x+4)-2=2(2x+5)+x | | 18/12=x/8 | | -5x-1=-2x=14 | | 25*x^2=20-4*x | | 0=3x^2+20x-100 | | -7=3-5x/5 | | -3x+5=-8x=10 | | k^2-8k-5=0 | | 4(2-x)=3x-6+2(2x+5) | | 5+3t-2=9t+9-5t | | 5x-1=4x-20 | | x^2-9x+20.25=4.75 | | 42f+49=-9f^2 | | 2x+3(×-10)=45 | | 9x+7=4x–3 | | 3(x+5)=7(x+2) | | 3x^2+x=16 | | 18-(x+50)=2-(4x-8)+2(x-1) | | x^2-4x-1-2/x^2-4x+1=13 | | 6x-16/4=8 | | -147=-12y^2 | | 4=(y+7)/(y-7)= | | -147=12u^2 | | 2x-15/7=-3 | | g^2-24=-5g | | X2-19x+48=0 | | 4(a-3)=2(5a-15) | | 1+6c=4 | | x^2+16x=46 | | 2x+4(3–2x)=2+4 |